\( \DeclareMathOperator{cosec}{cosec} \)
Sign In | Starter Of The Day | Tablesmaster | Fun Maths | Maths Map | Topics | More
Here are some specific activities, investigations or visual aids we have picked out. Click anywhere in the grey area to access the resource.
Here are some exam-style questions on this statement:
Here is an Advanced Starter on this statement:
Click on a topic below for suggested lesson Starters, resources and activities from Transum.
In the field of mathematics, particularly in vector algebra, a vector is a fundamental concept that represents both magnitude and direction. Vectors can be added or subtracted to form new vectors, and they can also be scaled (multiplied) by a scalar, which changes their magnitude without altering their direction. The magnitude of a vector is a measure of its length.
The key formulae for vectors are:
Vector Addition: \(\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}\)
Vector Subtraction: \(\mathbf{a} - \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \end{pmatrix}\)
Scalar Multiplication: \(k\mathbf{a} = k \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} ka_1 \\ ka_2 \end{pmatrix}\)
Magnitude of a Vector: \(\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2}\)
Example:
Consider two vectors \(\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\).
The sum of \(\mathbf{a}\) and \(\mathbf{b}\) is: $$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 + (-1) \\ 3 + 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$$
If we multiply vector \(\mathbf{a}\) by a scalar, say 3, we get: $$3\mathbf{a} = 3 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \times 2 \\ 3 \times 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \end{pmatrix}$$
The magnitude of vector \(\mathbf{a}\) is: $$\|\mathbf{a}\| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$$
How do you teach this topic? Do you have any tips or suggestions for other teachers? It is always useful to receive feedback and helps make these free resources even more useful for Maths teachers anywhere in the world. Click here to enter your comments.