\( \DeclareMathOperator{cosec}{cosec} \)

Sign In | Starter Of The Day | Tablesmaster | Fun Maths | Maths Map | Topics | More

International Baccalaureate Mathematics

Calculus

Syllabus Content

Definite integrals, including analytical approach. Areas of a region enclosed by a curve y=f(x) and the x-axis, where f(x) can be positive or negative, without the use of technology. Areas between curves

Here are some specific activities, investigations or visual aids we have picked out. Click anywhere in the grey area to access the resource.

Here are some exam-style questions on this statement:

See all these questions

Click on a topic below for suggested lesson Starters, resources and activities from Transum.


Furthermore

Official Guidance, clarification and syllabus links: $$\int_{a}^{b} g'(x) \; dx = g(b)-g(a)$$

The value of some definite integrals can only be found using technology.

Link to: definite integrals using technology

Students are expected to first write a correct expression before calculating the area.

Technology may be used to enhance understanding of the relationship between integrals and areas.


Formula Booklet:

Area of region enclosed by a curve and x-axis

$$A = \int_{a}^{b} |y| \; dx $$


Areas between curves

We want to find the area between the curves \( y = x^2 + x - 2 \) and \( y = x + 2 \). First, we need to find the points of intersection between the two curves.

We can do this by setting the two equations equal to each other and solving for \( x \):

\[ \begin{align*} x^2 + x - 2 &= x + 2 \\ x^2 &= 4 \\ (x - 2)(x + 2) &= 0. \end{align*} \]

The solutions are \( x = 2 \) and \( x = -2 \), so the curves intersect at these points.

Next, we'll find the area between the curves by integrating the difference between the two functions over the interval from \(-2\) to \(2\)

\[ \begin{align*} \text{Area} &= \int_{-2}^{2} \left( x + 2 - (x^2 + x - 2) \right) \,dx \\ &= \int_{-2}^{2} \left( -x^2 + 4 \right) \,dx \\ &= \left[ - \frac{x^3}{3} + 4x \right]_{-2}^2\\ &=(-8/3+8)-(8/3-8)\\ &=10 \frac23 \text{ square units} \end{align*} \]

This Finding Areas Under Curves video is from Revision Village and is aimed at students taking the IB Maths Standard level course


Trapezium Rule is a textbook style page with a few worked examples from Alevelmaths.co.uk.


How do you teach this topic? Do you have any tips or suggestions for other teachers? It is always useful to receive feedback and helps make these free resources even more useful for Maths teachers anywhere in the world. Click here to enter your comments.


Transum.org is a proud supporter of the kidSAFE Seal Program