Transum Software

Geometric Sequences

An exercise on geometric sequences including finding the nth term and the sum of n terms.

  Menu   Level 1 Level 2 Level 3 Level 4 Level 5   Exam     Help     More  

This is level 5: sum of infinite convergent geometric sequences. You will be awarded a trophy if you get at least 7 answers correct and you do this activity online.

1

Find the sum of this infinite convergent geometric sequence
$$64, 32, 16, 8, 4 \ldots$$

2

Evaluate this infinite convergent geometric series
$$81+27+9+3+ \ldots$$

3

A geometric sequence has eight as its first term and a common ratio of three-quarters. Find the sum of the terms of the sequence as the number of terms tends to infinity.

4

Only one of the following geometric series converges. What does it converge to?
$$24 + 30 + 37.5 + 46.875 + \ldots\\24 + 18 + 13.5 + 10.125 + \ldots\\24 + 27 + 30.375 + 34.171875 + \ldots$$

5

Only one of the following geometric series converges. What does it converge to?
$$48 -60 + 75 -93.75 + \ldots\\48 -84 + 147 -257.25 + \ldots\\48 -42 + 36.75 -32.15625 + \ldots$$

6

The third term of a geometric sequence is 64. The sixth term is 8. Find the sum to infinity of the sequence.

7

The sum to infinity of a geometric sequence is 5. Its first term is five times its common ratio. Find the second term of the sequence.

8

The sum to infinity of a geometric sequence is 81 and the sum of the first four terms is 65. Find the third term of the sequence if it is known to be greater than 50.

9

The following geometric series converges. What is the smallest number that \(x\) must be less than?
$$ (3-x) + (3-x)^2 + (3-x)^3 + \ldots$$

10

The second term of a geometric sequence is \(-\frac{4}{5} \). The sum to infinity of the sequence is \( 7\frac{3}{11} \). What is the first term of the sequence?

Check

This is Geometric Sequences level 5. You can also try:
Arithmetic Sequences Level 1 Level 2 Level 3 Level 4 Quadratic Sequences

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Why am I learning this?

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 24 May 'Starter of the Day' page by Ruth Seward, Hagley Park Sports College:

"Find the starters wonderful; students enjoy them and often want to use the idea generated by the starter in other parts of the lesson. Keep up the good work"

Comment recorded on the 2 May 'Starter of the Day' page by Angela Lowry, :

"I think these are great! So useful and handy, the children love them.
Could we have some on angles too please?"

Each month a newsletter is published containing details of the new additions to the Transum website and a new puzzle of the month.

The newsletter is then duplicated as a podcast which is available on the major delivery networks. You can listen to the podcast while you are commuting, exercising or relaxing.

Transum breaking news is available on Twitter @Transum and if that's not enough there is also a Transum Facebook page.

Featured Activity

Car Park Puzzle

Car Park Puzzle

Can you get your car out of the very crowded car park by moving other cars forwards or backwards? There are five levels of increasing difficulty and the interactive interface makes this a fun problem solving exercise.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Alternatively, if you use Google Classroom, all you have to do is click on the green icon below in order to add this activity to one of your classes.

It may be worth remembering that if Transum.org should go offline for whatever reason, there is a mirror site at Transum.info that contains most of the resources that are available here on Transum.org.

When planning to use technology in your lesson always have a plan B!

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Transum.org is a proud supporter of the kidSAFE Seal Program

© Transum Mathematics 1997-2024
Scan the QR code below to visit the online version of this activity.

This is a QR Code

https://www.Transum.org/go/?Num=726

Description of Levels

Close

Level 1 - Find the next term of these geometric sequences

Level 2 - Find a given term of these geometric sequences

Level 3 - Find the first five terms of the sequence given the formula

Level 4 - Mixed questions about geometric sequences and their sums

Level 5 - Sum of infinite convergent geometric sequences

Missing Terms - Find the missing terms of arithmetic, geometric and Fibonacci-type sequences in this self marking quiz.

Exam Style questions are in the style of GCSE or IB/A-level exam paper questions and worked solutions are available for Transum subscribers.

Arithmetic Sequences - A similar exercise on arithmetic sequences.

Sigma - Practise using the sigma notation to find the sum of various number series.

More on this topic including lesson Starters, visual aids and investigations.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Curriculum Reference

See the National Curriculum page for links to related online activities and resources.

Geometric Sequences

Here is a reminder of some facts that may help you answering the questions in this exercise.

An geometric sequence, sometimes called a geometric progression, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 5, 10, 20, 40, ... is a geometric sequence with common ratio 2.

The first term of the sequence can be written as u1

The nth term of the sequence can be written as un

The common ratio is usually written as r

The formula for finding the nth term is un=u1r(n-1)


The formula for finding the sum of \(n\) terms is:

$$ S_n = \dfrac{u_1(r^n-1)}{r-1}$$

The sum of an infinite geometric sequence is:

$$ S_\infty = \dfrac{u_1}{1-r}, \quad |r| \lt 1 $$

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can double-click the 'Check' button to make it float at the bottom of your screen.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Close