Transum Software

Proof of Circle Theorems

Arrange the stages of the proofs for the standard circle theorems in the correct order.

Circle Theorems Help Video More on Circles More on Angles

Drag the statements proving the theorem into the correct order.

Circle Theorem
  • Similarly ∠AOC = 180° – 2 x ∠OCA
  • OB = OC (radii of circle)
  • ∠BOA = 2∠BCA Q.E.D.
  • Construct radius OC
  • ∠COB = 180° – 2 x ∠BCO (Angle sum of triangle OBC)
  • To prove: ∠BOA = 2∠BCA
  • ∠BCO = ∠OBC (equal angles in isosceles triangle)
  • ∠BOA = 2(∠BCO + ∠OCA)
  • ∠BOA = 360° – (180° – 2 x ∠BCO + 180° – 2 x ∠OCA)
  • ∴ OBC is an isosceles triangle

Correct Wrong

Circle Theorem
  • ∴ 2 x ∠ABD = 2 x ∠ACD
  • ∠AOD = 2 x ∠ABD (angle at centre twice angle at circumference)
  • ∠AOD = 2 x ∠ACD (angle at centre twice angle at circumference)
  • ∠ABD = ∠ACD Q.E.D.
  • Construct radii from A and D
  • To prove: ∠ABD = ∠ACD

Correct Wrong

Circle Theorem
  • Similarly in triangle BCO ∠OCB = ∠OBC
  • To prove: ∠ABC = 90°
  • ∴ ∠OAB = ∠OBA (equal angles in isosceles triangle ABO)
  • ∠OAB + ∠OBA + ∠OCB + ∠OBC = 180° (Angle sum of triangle ABC)
  • OA = OB (radii)
  • ∴ 2(∠OBA + ∠OBC) = 180°
  • ∴ ABO is an isosceles triangle (two equal sides)
  • ∠ABC = 90° Q.E.D.
  • Construct the radius OB
  • ∴ ∠OBA + ∠OBC = 90°

Correct Wrong

Circle Theorem
  • The obtuse and reflex angles at O add up to 360° (angles at a point)
  • Similarly the obtuse angle AOC = 2 x ∠CDA
  • To prove ∠ABC + ∠CDA = 180°
  • ∴ 2 x ∠ABC + 2 x ∠CDA = 360°
  • Reflex ∠AOC = 2 x ∠ABC (angle at centre twice angle at circumference)
  • ∠ABC + ∠CDA = 180° Q.E.D.
  • Construct the radii OA and OC

Correct Wrong

Circle Theorem
  • 2 x ∠CAB = 2 x ∠CBD (from [1] above)
  • ∠OBC + ∠CBD = 90° (angle between radius and tangent) [2]
  • ∠CAB = ∠CBD Q.E.D.
  • 2 x ∠OBC + ∠COB = 180° (angle sum of triangle) [3]
  • Obtuse ∠COB = 2 x ∠CAB (angle at centre twice angle at circumference) [1]
  • ∠COB = 2 x ∠CBD
  • To prove ∠CAB = ∠CBD
  • ∠OBC = ∠OCB (equal angles in isosceles triangle OBC)
  • Construct the radii OB and OC
  • 2 x ∠OBC + ∠COB = 2(∠OBC + ∠CBD) (from [2] and [3] above)

Correct Wrong

Check

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Why am I learning this?

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 16 March 'Starter of the Day' page by Mrs A Milton, Ysgol Ardudwy:

"I have used your starters for 3 years now and would not have a lesson without one! Fantastic way to engage the pupils at the start of a lesson."

Comment recorded on the 14 October 'Starter of the Day' page by Inger Kisby, Herts and Essex High School:

"Just a quick note to say that we use a lot of your starters. It is lovely to have so many different ideas to start a lesson with. Thank you very much and keep up the good work."

Each month a newsletter is published containing details of the new additions to the Transum website and a new puzzle of the month.

The newsletter is then duplicated as a podcast which is available on the major delivery networks. You can listen to the podcast while you are commuting, exercising or relaxing.

Transum breaking news is available on Twitter @Transum and if that's not enough there is also a Transum Facebook page.

Featured Activity

Bidmaze

Bidmaze

Find your way through the maze encountering mathematical operations in the correct order to achieve the given total. This is an addictive challenge that begins easy but develops into quite a difficult puzzle.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Alternatively, if you use Google Classroom, all you have to do is click on the green icon below in order to add this activity to one of your classes.

It may be worth remembering that if Transum.org should go offline for whatever reason, there is a mirror site at Transum.info that contains most of the resources that are available here on Transum.org.

When planning to use technology in your lesson always have a plan B!

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Transum.org is a proud supporter of the kidSAFE Seal Program

Proof of Circle Theorems

This is a video playlist.

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Curriculum Reference

See the National Curriculum page for links to related online activities and resources.

Close

Close