Sign In | Starter Of The Day | Tablesmaster | Fun Maths | Maths Map | Topics | More

These are the statements describing what students need to learn:

[Higher Level only statements are in blue]

- Different forms of the equation of a straight line.

Gradient, intercepts.

Parallel lines m_{1}= m_{2}.

Perpendicular lines m_{1}× m_{2}= -1. - concept of a function, domain, range and graph. Function notation, for example f(x), v(t), C(n). The concept of a function as a mathematical model. Informal concept that an inverse function reverses or undoes the effect of a function. Inverse function as a reflection in the line y=x, and the notation f
^{-1}(x) - the graph of a function; its equation y=f(x). Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences
- determine key features of graphs.

Finding the point of intersection of two curves or lines using technology. - composite functions. Identity function. Finding the inverse function f
^{-1}(x) - The quadratic function f(x)=ax
^{2}+bx+c: its graph, y-intercept (0,c). Axis of symmetry. The form f(x)=a(x-p)(x-q), x-intercepts (p,0) and (q,0). The form f(x)=a(x-h)^{2}+k, vertex (h,k) - solution of quadratic equations and inequalities. The quadratic formula. The discriminant ∆=b
^{2}-4ac and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots - the reciprocal function f(x)=1/x, x ≠ 0: its graph and self-inverse nature. Rational functions of the form f(x)=(ax+b)/(cx+d) and their graphs. Equations of vertical and horizontal asymptotes
- Exponential functions and their graphs: f(x)=a
^{x}, a>0, f(x)=e^{x}. Logarithmic functions and their graphs: f(x)=log_{a}x, x>0, f(x)=lnx, x>0 - solving equations, both graphically and analytically. Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach. Applications of graphing skills and solving equations that relate to real-life situations
- transformations of graphs. Translations: y=f(x)+b;y=f(x-a). Reflections (in both axes): y=-f(x);y=f(-x). Vertical stretch with scale factor p: y=pf(x). Horizontal stretch with scale factor 1/q: y=f(qx). Composite transformations.
- Polynomial functions, their graphs and equations; zeros, roots and factors. The factor and remainder theorems. Sum and product of the roots of polynomial equations.
- Rational functions of the form:

f(x)=(ax+b)÷(cx^{2}+dx+e) and

f(x) =(ax^{2}+bx+c)÷(dx+e) - Odd and even functions.

Finding the inverse function, f^{-1}(x), including domain restriction.

Self-inverse functions. - Solutions of g(x) ≥ f(x), both graphically and analytically.
- The graphs of the functions, y=|f(x)|

and

y=f(|x|), y=1/f(x), y=f(ax+b), y=[f(x)]^{2}.

Solution of modulus equations and inequalities.

Click on a statement above for suggested resources and activities from Transum.